Difference between revisions of "Math"
(One intermediate revision by the same user not shown) | |||
Line 125: | Line 125: | ||
[[math.deg]] ''returns angle in degrees of radians rad''<br/><!--GIDEROSMTD:math.deg(rad) returns angle in degrees of radians rad--> | [[math.deg]] ''returns angle in degrees of radians rad''<br/><!--GIDEROSMTD:math.deg(rad) returns angle in degrees of radians rad--> | ||
[[math.exp]] ''returns e^v''<br/><!--GIDEROSMTD:math.exp(v) returns e^v--> | [[math.exp]] ''returns e^v''<br/><!--GIDEROSMTD:math.exp(v) returns e^v--> | ||
− | [[math.fft]] '' | + | [[math.fft]] ''computes the discrete Fourier transform''<br/><!--GIDEROSMTD:math.fft(t) computes the discrete Fourier transform--> |
[[math.floor]] ''returns largest integer <= v''<br/><!--GIDEROSMTD:math.floor(v) returns largest integer <= v--> | [[math.floor]] ''returns largest integer <= v''<br/><!--GIDEROSMTD:math.floor(v) returns largest integer <= v--> | ||
[[math.fmod]] ''returns remainder of v1/v2 which is v1 - iV2 for some integer i''<br/><!--GIDEROSMTD:math.fmod(v1,v2) returns remainder of v1/v2 which is v1 - iV2 for some integer i--> | [[math.fmod]] ''returns remainder of v1/v2 which is v1 - iV2 for some integer i''<br/><!--GIDEROSMTD:math.fmod(v1,v2) returns remainder of v1/v2 which is v1 - iV2 for some integer i--> | ||
[[math.frexp]] ''returns mantissa [0.5,1) and exponent values of v''<br/><!--GIDEROSMTD:math.frexp(v) returns mantissa [0.5,1) and exponent values of v--> | [[math.frexp]] ''returns mantissa [0.5,1) and exponent values of v''<br/><!--GIDEROSMTD:math.frexp(v) returns mantissa [0.5,1) and exponent values of v--> | ||
− | [[math.ifft]] '' | + | [[math.ifft]] ''computes the inverse discrete Fourier transform''<br/><!--GIDEROSMTD:math.ifft(t) computes the inverse discrete Fourier transform--> |
[[math.ldexp]] ''returns v1*2^v2''<br/><!--GIDEROSMTD:math.ldexp(v1,v2) returns v1*2^v2--> | [[math.ldexp]] ''returns v1*2^v2''<br/><!--GIDEROSMTD:math.ldexp(v1,v2) returns v1*2^v2--> | ||
[[math.log]] ''returns natural logarithm of v''<br/><!--GIDEROSMTD:math.log(v) returns natural logarithm of v--> | [[math.log]] ''returns natural logarithm of v''<br/><!--GIDEROSMTD:math.log(v) returns natural logarithm of v--> | ||
Line 148: | Line 148: | ||
[[math.tan]] ''returns tangent value of angle rad''<br/><!--GIDEROSMTD:math.tan(rad) returns tangent value of angle rad--> | [[math.tan]] ''returns tangent value of angle rad''<br/><!--GIDEROSMTD:math.tan(rad) returns tangent value of angle rad--> | ||
[[math.tanh]] ''returns hyperbolic tangent of v''<br/><!--GIDEROSMTD:math.tanh(v) returns hyperbolic tangent of v--> | [[math.tanh]] ''returns hyperbolic tangent of v''<br/><!--GIDEROSMTD:math.tanh(v) returns hyperbolic tangent of v--> | ||
− | |||
| style="width: 50%; vertical-align:top;"| | | style="width: 50%; vertical-align:top;"| | ||
− | |||
=== '''Gideros specific methods''' === | === '''Gideros specific methods''' === | ||
[[math.length]] ''returns the length of a vector''<br/><!--GIDEROSMTD:math.length(v) returns the length of a vector--> | [[math.length]] ''returns the length of a vector''<br/><!--GIDEROSMTD:math.length(v) returns the length of a vector--> |
Latest revision as of 02:49, 8 November 2024
Supported platforms:
Available since: Gideros 2011.6
Description
math table holds most commonly used math functions and constants.
Example
A nice example demonstrating various Gideros specific maths functions
local myappwidth = application:getContentWidth()
local myappheight = application:getContentHeight()
application:setBackgroundColor(0x555555)
local pixel = Pixel.new(0xffffff, 1, 16, 16)
pixel:setAnchorPoint(0.5, 0.5)
pixel:setPosition(7*myappwidth/10, 5*myappheight/10)
stage:addChild(pixel)
local raycast = Shape.new()
stage:addChild(raycast)
-- circle
local p=Particles.new()
stage:addChild(p)
local circlepts={}
circlepts[#circlepts+1] = { -- 1st circle
x=128, y=128,
size=128,
color=0x0000ff,
id=#circlepts+1,
radius=128/2,
}
circlepts[#circlepts+1] = { -- 2nd circle
x=128*3, y=128,
size=128*1.5,
color=0x0000aa,
id=#circlepts+1,
radius=128*1.5/2,
}
circlepts[#circlepts+1] = { -- 3rd circle
x=128*2, y=128*3,
size=64,
color=0x000055,
id=#circlepts+1,
radius=64/2,
}
p:addParticles(circlepts)
-- markers
local pedge = p:addParticles{ {x=0, y=0, size=5, color=0x0} }[1]
local pray = p:addParticles{ {x=0, y=0, size=5, color=0xffffff, alpha=1} }[1]
local pray2 = p:addParticles{ {x=0, y=0, size=5, color=0xaaaaaa, alpha=1} }[1]
local shapeid
stage:addEventListener(Event.MOUSE_HOVER,function (e)
local mouse={x=e.x, y=e.y}
-- reset all circles original colors
for i = 1, #circlepts do
p:setParticleColor(i, circlepts[i].color, 1)
end
-- gets the mouse nearest circle id
local nearestpoint, npdistance = math.nearest(mouse, circlepts)
shapeid=nearestpoint.id
-- highlights circle if mouse is close
if npdistance < circlepts[shapeid].radius + 48 then
p:setParticleColor(shapeid, 0xffff00, 1)
end
-- checks if mouse is inside circle
local inside = math.inside(mouse, nearestpoint)
if inside < 0 then
p:setParticleColor(shapeid, 0x00ff00, 1)
end
-- edge
local d = math.edge(mouse, nearestpoint)
p:setParticlePosition(pedge, d.x, d.y)
-- raycast
local r = math.raycast( -- origin, direction, shape
{x=mouse.x, y=mouse.y},
math.normalize({x=mouse.x-pixel:getX(), y=mouse.y-pixel:getY()}),
circlepts
)
if r[1] then
p:setParticlePosition(pray, r[1].point.x, r[1].point.y)
p:setParticleColor(pray, p:getParticleColor(pray), 1)
else
p:setParticleColor(pray, p:getParticleColor(pray), 0)
end
if r[2] then
p:setParticlePosition(pray2, r[2].point.x, r[2].point.y)
p:setParticleColor(pray2, p:getParticleColor(pray2), 1)
else
p:setParticleColor(pray2, p:getParticleColor(pray2), 0)
end
-- a line
raycast:clear()
raycast:setLineStyle(5, 0xffffff, 0.5)
raycast:beginPath()
raycast:moveTo(mouse.x, mouse.y)
raycast:lineTo(pixel:getX(), pixel:getY())
raycast:endPath()
end)
Methodsmath.abs returns absolute value of v |
Gideros specific methodsmath.length returns the length of a vector EventsConstants |